首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   5篇
  国内免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   46篇
地质学   67篇
海洋学   16篇
天文学   5篇
自然地理   3篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   11篇
  2015年   1篇
  2014年   5篇
  2013年   6篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   7篇
  2008年   11篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   8篇
  2002年   1篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
91.
Dynamical behaviour of an evaporating black hole is investigated for a Vaidya-type metric. The Raychaudhuri equation is examined with including terms up to the second order in the luminosity near the event horizon. Such a solution is found that the luminosity increases as the mass decreases during the evaporation.  相似文献   
92.
93.
http://dx.doi.org/10.1016/j.gsf.2016.07.005   总被引:1,自引:1,他引:0  
The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere. The Earth-Moon system had many features in common during the birth stage. Solidification of the dry magma ocean at 4.53 Ga generated primordial continents with komatiite. We speculate that the upper crust was composed of fractionated gabbros and the middle felsic crust by anorthosite at ca. 21 km depth boundary, underlain by meta-anorthosite (grossular + kyanite + quartz) down to 50–60 km in depth. The thickness of the mafic KREEP basalt in the lower crust, separating it from the underlying upper mantle is not well-constrained and might have been up to ca. 100–200 km depending on the degree of fractionation and gravitational stability versus surrounding mantle density. The primordial continents must have been composed of the final residue of dry magma ocean and enriched in several critical elements including Ca, Mg, Fe, Mn, P, K, and Cl which were exposed on the surface of the dry Earth. Around 190 million years after the solidification of the magma ocean, “ABEL bombardment” delivered volatiles including H2O, CO2, N2 as well as silicate components through the addition of icy asteroids. This event continued for 200 Myr with subordinate bombardments until 3.9 Ga, preparing the Earth for the prebiotic chemical evolution and as the cradle of first life. Due to vigorous convection arising from high mantle potential temperatures, the primordial continents disintegrated and were dragged down to the deep mantle, marking the onset of Hadean plate tectonics.  相似文献   
94.
The Naein ophiolite is the most complete ophiolitic exposure in Cental Iran and considered as a remnant of the Mesozoic Central East Iranian microcontinent (CEIM) confining oceanic crust. In the northeastern part of this ophiolite (Darreh Deh area) within the mantle peridotites, a few hundred meters below the top of the Moho transition zone (MTZ), the hornblendites are present as dykes (former cracks and joints) from a few millimeters to nearly 50 cm wide. They have sharp boundaries with the surrounding mantle harzburgites and dunites. These hornblendites are pale green and coarse-grained in hand specimen and composed of magnesio-hornblende (Mg# = 0.93), chlorite (penninite and clinochlore, Mg# = 0.95), Cr-spinel (chromite, Cr# = 0.67 and Mg# = 0.55), tremolite, calcite and dolomite. Tremolites were formed by retrograde metamorphism of hornblendes. Calcite and dolomite occur as late-stage veins. Very high amount of primary hydrous phases (~94 vol % hornblende and chlorite), as well as peculiar mineralogical and chemical characteristics of the Naein ophiolite mantle hornblendites, do not match a magmatic origin. They are possibly products of the reaction between mantle peridotites and seawater-originated supercritical fluids, rich in silicate components. The presence of primary hydrous phases (hornblende and chlorite) may reveal high activity of H2O in the involved solution. The chemical composition of chromite in the hornblendites is near to the average chromite composition from the surrounding harzburgite and dunite. This suggests that the main source of Cr should be chromites of nearby peridotites, which were totally or partly dissolved by hydrothermal fluids. The positive anomaly of Eu in the chondrite-normalized REE patterns of hornblendes, high modal abundance of Ca-rich hornblende, as well as presence of calcite and dolomite, point to seawater ingression through the gabbros in to the uppermost mantle peridotites. The higher value of MgO than CaO, presence of high-Cr chromite and Cr-enrichment of hornblendes and chlorites indicate a higher contribution of peridotites rather than gabbros to the chemical characteristics of the involved fluids. This study shows that circulation of possibly seawater-derived high temperature hydrous fluids in the upper mantle can leach and provide necessary elements to form hornblendite in joints and cracks of the uppermost mantle.  相似文献   
95.
Abstract The Isabela ophiolite, the Philippines, is characterized by a lherzolite‐dominant mantle section, which was probably formed beneath a slow‐spreading mid‐ocean ridge. Several podiform chromitites occur in the mantle section and grade into harzburgite to lherzolite. The chromitites show massive, nodular, layered and disseminated textures. Clinopyroxene (±orthopyroxene/amphibole) inclusions within chromian spinel (chromite hereafter) are commonly found in the massive‐type chromitites. Large chromitites are found in relatively depleted harzburgite hosts having high‐Cr? (Cr/(Cr + Al) atomic ratio = ~0.5) chromite. Light rare earth element (LREE) contents of clinopyroxenes in harzburgites near the chromitites are higher than those in lherzolite with low‐Cr? chromite, whereas heavy REE (HREE) contents of clinopyroxenes are lower in harzburgite than in lherzolite. The harzburgite near the chromitites is not a residual peridotite after simple melt extraction from lherzolite but is formed by open‐system melting (partial melting associated with influx of primitive basaltic melt of deeper origin). Clinopyroxene inclusions within chromite in chromitites exhibit convex‐shaped REE patterns with low HREE and high LREE (+Sr) abundances compared to the host peridotites. The chromitites were formed from a hybridized melt enriched with Cr, Si and incompatible elements (Na, LREE, Sr and H2O). The melt was produced by mixing of secondary melts after melt–rock interaction and the primitive basaltic melts in large melt conduits, probably coupled with a zone‐refining effect. The Cr? of chromites in the chromitites ranges from 0.65 to 0.75 and is similar to those of arc‐related magmas. The upper mantle section of the Isabela ophiolite was initially formed beneath a slow‐spreading mid‐ocean ridge, later introduced by arc‐related magmatisms in response to a switch in tectonic setting during its obduction at a convergent margin.  相似文献   
96.
97.
A corundum-bearing mafic rock in the Horoman Peridotite Complex, Japan, was derived from upper mantle conditions to lower crustal conditions with surrounding peridotites. The amphiboles found in the rock are classified into 3 types: (1) as interstitial and/or poikilitic grains (Green amphibole), (2) as a constituent mineral of symplectitic mineral aggregates with aluminous spinel at grain boundary between olivine and plagioclase (Symplectite amphibole) and (3) as film-shaped thin grains, usually less than 10 μm in width, at grain boundary between olivine and clinopyroxene (Film-shaped amphibole). The Film-shaped amphibole is rarely associated with orthopyroxene extremely low in Al2O3, Cr2O3 and CaO (Low-Al OPX). These minerals were formed by infiltration of SiO2- and volatile-rich fluids along grain boundaries after the rock was recrystallized at olivine-plagioclase stability conditions, i.e. the late stage of the exhumation of the Horoman Complex.

Chondrite-normalized rare earth element patterns and primitive mantle-normalized trace-element patterns of the Green amphibole and clinopyroxene are characterized by LREE-depleted patterns with Eu positive and negative anomalies of Zr and Hf. These geochemical characteristics of the constituent minerals were inherited from original whole-rock compositions through a reaction involving both pre-existing clinopyroxene and plagioclase. We propose that the fluids were originally rich in a SiO2 component but depleted in trace-elements. Dehydration of the surrounding metamorphic rocks in the Hidaka metamorphic belt, probably related to intrusion of hot peridotite body into the Hidaka crust, is a plausible origin for the fluids.  相似文献   

98.
It is shown that the recently obtained Jordan-Brans-Dicke solutions by Chauvet and Guzmán (1986) are either inconsistent, or only special power-law solutions derived previously by Lorenz-Petzold in various papers.  相似文献   
99.
Abstract 40Ar–39Ar analysis of phlogopite separated from a plagioclase lherzolite of the Horoman Peridotite Complex, Hokkaido, Japan, has yielded a plateau age of 20.6 ± 0.5 Ma in an environment where the metamorphic fluid was characterized by an almost atmospheric Ar isotopic ratio. The age spectrum is slightly saddle-shaped, implying some incorporation of excess 40Ar during the formation of the phlogopite at a depth. As the phlogopite has been inferred to have formed in veins and/or interstitials during exhumation of the peridotite body, metasomatic fluids, to which ground- and sea water might have contributed, were probably involved in the formation of phlogopite in the crustal environment. A total 40Ar–39Ar age of 129 Ma of a whole rock sample of the plagioclase lherzolite, from which the phlogopite was separated and is representative of the main lithology of the Horoman Peridotite Complex, indicates the occurrence of excess 40Ar. Hence, the age has no geological meaning.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号